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0. Introduction

During the last decade, discrete methods -- other than the classical
finite-differences -- have gained an iucreasing popularity while used for the
approximate solution of time-dependent problems. Most noticable, are the
(pseudo)spectral and Galerkin methods, e.g. [4-9), [13-14], (19), [21] and the
references tuerein.

The purpose of these notes is to give a unified survey on these three
classes of discrete methods — finite differences, spectral and Galerkin,
discussing some of the theoretical aspects with regard to their accuracy,
stability and efficient implementation. As a uodel problem for our

discussion, we consider the one-dimensional symmetric hyperbolic system
(0'1) 3tu(x,t) - A(x,t)axu(x.t) + B(‘Dt)u(x!t)l A(x’t) - A‘(‘ot)'

Here and elswhere in the paper, w* denotes the transpose of a given vector,
w* its conjugate transpose, and les(w*w) 1/2 its Euclidean norm; similar
notations are used for watrices. We will also briefly mention systems of
parabolic type, which are more favored by the kind of arguments discussed
below, due to the presence of dissipation. To avoid further complications
that arise with time-discretization and handling boundary conditions, we
restrict our atteantion to the periodic method of lines. This allows us to
make a rather detailed study of various types of approximations to (0.1),
wheve the spatfal differentation is replaced by its discrete counterpart.

We begin, in Part I, discussing finite diiference methods. Our approach
-~ sglightly different than usual -- emphasizes the matrix representation of
such methods. The reason {s a two-fold one: first, the standard approach via

Von Neumann analysis is by now classical and can be found in a variety of
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references, e.g. [15]; second, viewing these discretizations in the language
of matrices allow us to move quite naturally to ocur discussion on spectral and
Galerkin methods in the second and third parts. TIudeed, the generality of the
abstract discrete differentation operator dealt with in Part I will prevail
for finite-difference as well as spectral and Galerkin methods. One of the
main objectives of this review 1s, in fact, to show the intimate relation
between the three: the spectral-Fourier method caa be viewed as a special
centered finite differeuncing based on an ever increasing number of gridpoints
peridoically extended, and boch result from an appropriate choice of basis
functions used in the Galarkin method.

We focus our atteantion on the all important question of stability. 1t is
shown that antisymmetry perfodicity as well as a locality restriction are
essential properties that a discrete differencing method should share with the
differential problem, for the resulting discrete system to be stable. The
locality vestriction can be equivalently expressed by the boundedness of
amplification blocks assoclated with the highest modes. The accuracy
requirement, on the other hand, is determined by the exactness of differencing
the lower modes. The conbination of the two guarantee convergeunce, as the
lower modes carrying most of the information are accurately represented, while
the highest wmodes are not, yet stability assures us that they are not
amplified and hence rapidly tend to zero, just as is the case with the
differential problem.

Both properties of accuracy and stability are well accommodated in
diecrete methods having finite degree of accuracy; they contradict each other,
however, with highly accurate methods. We are then led to a discussion on the
skew~symmetric differencing and smoothing procedures. Both aim at dissolving

this contradiction by bounding the highest modes’ amplification blocks, yet
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leaving the lower, accurate modes, unharmed.

In Part II we amplify these points with regard to the spectral-Fourier
method, from still a slightly differeat poiat of view. We base the whole
stability analysis in this case on the aliasing formula, relating the Fourier
coefficients of a given perfodic function to those of 1its equidistant
interpolant. This is the single most important formula, which dominates the
question of accuracy versus stahility in this case. It naturally arises with
the Fourier method as the aliasing dilemma, and its usual remedy is again by
efther skew-symmetric differencing or via smoothing. From this point of view,
finite difference methods haviung flaite degree of accuracy can be viewed as
special cases of the Fourier method with a built-in smoothing which guarantees
their stability.

In Part III we discuss Galerkin-type methods. Again there 1is an emphasis
on the close connection with finite~difference and spectral-Fourife. methods.
Stability follows in this case, due to lack of aliasing. Once the exact
Fourier coefficients are discretized, we fiad ourselves dealing with exactly
the same kind of arguments futroduced before.

Finally, in order to make these notes self-contained, we have collected
in the Appendix gome basic properties of Toeplitz aud clrculant matrices;

these play a vital role in the foregoing analysis.
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Part I. Finite Difference Methods

1. Fiaite Difference Operators
Let v(x) be a 2n-periodic m-dimensional vector function, whose values
v, = v(xv) are assumed known at the gridpoints x, = Vh, h = g%,

ve(Q,l,v N1, A second order accurate approximation to its

derivative, va(x), is given by the centered divided differeance

(1.1,) D, (h) (v(x)) = LOxth) = v(xh) |

When augmented by the periodicity of v, these divided differences are well

defined at all gridpoints x = x , Vv = 0,1,°+ N-1, The transformation which

‘,)
takes the vector of the assumed known gridvalues y = (v0,~'°,VN_1)‘ iato the
vector of divided differences BFDZ[!] E (Dz(h)[vol,"',Dz(h)[vh_l]) is

linear, and hence has a matrix representation

(1'22) aFD?_[!] = p.z!;

here the matrix D, = D,(h) 1is givea by

-I 0 I 0
0 -I 0 .
l. . :
(1.35) 2, = o ;

.
(=]
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its entries are being m-dimensional blocks. Simtlarly, fourth aud sixth order

accurate centered divided differences are given by

4p,(h) - D, (2h)

D, (W) [v(0)] = —E——=—2——(v(x)
- BIv(eth)=v(x-h)] = [v(e2h)-v(x-2h)]
12h
150,(h) = 60,(2h) + D, (3)
Dg(h) (v(x)] = 10 {v(x)]
(1.1¢)

o A5 (v(xth)=v(x=h)] - 9(v(xt2h)-v(x-2h)] + [v(xt3h)-v(x-3h)]
60h

with their corresponding matrix representations

r o0 81 I 0 « + « 0 1 81"
AN
-81 o st 0 1
I -8I 0\ 0
O\\ \‘\ :
1 . : N
1.3,) D we—— o ™~ .
a3 2 =T . ~ AN
AN \\
. . . 0
0 . \\\\\\\\\-1
\ \o 8
-1 0 \\\\ T
L st oI 0+ + + 0 I <81 0
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(1.3¢) 0 &5 91 I 0 « « © 0 I O <4ST
=451 0 4§51 -91 o L o
91 <451 0 451 a1

-1 45

or
~ 1
S \-91
o1 0 &sI
1

) 0
0
451 -9 1 0 ¢« « 0 -1 91 ~451 o

gl

JP
.
D e s 0 O

/////////////////////i://
Qs 0 O

Obgserve that the matrices 229’ 8 =1,2,3 are antisymmetric block circulant
ones; by the latter we mean that their (j,k) block entry depends only on
(3-k) {modN].

The above examples 1llustrate special cases of a general 2s-order
accurate centered divided difference given by {9, Section 3}
1.1,,) b, (=2 6n cm, B =8 (s = D12

‘T2 M A L (stk) 1(s-k)!®
likewise, it has an antisymmetric block circulant matrix representation

Ry © t'I'Zs(h)
(1.25) 3 [¢] = D, v.
As 8 increases, so does the amount of work required to perform the

multiplication on the right-hand side of (l.25.). Traditionally, finite-

difference methods are employed with small values of s, s = 1,2,3, requiring
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a total amount of work of Ne¢s operations (1 operation = vector addition +
vector multiplicatiom by a scalar). For large values of s, st becomes a
full matrix whose multiplication requires an increasing amount of work, up
to w2 operations. This number of operations can be reduced, however, by
taking into acount that the matrix 223 13 a civculant one, and as such, can
be diagonalized by the block Fourier matrix PF. Specifically, let:'“the block
Fourier matrix P be‘ given by

(1.4a) [F]jk = %.e-ij kh.Im’

0< j,k < N~1
with the conventional notation
(1.4b) £° £ f-n, n 2 integral part of N/2,

to be used throughout the paper. We then have (see the appendix for details)

NE*A
(103828) st ~25F

with the block diagonal matrix AZs E st(h) given by
a0 22§t “ky - -
(1.3by,) [st]jj R kzlk B sin(i kh) T ,  O<y<N-1.

Multiplication of D,  in its spectral representation (l.3,.) can be

efficiently implemented by two FFT’s and N scalar multiplicatioms which
arount to B8NlogN operations.
In general, we consider an abstract discrete differemntation operator,

whose matrix representation D = D(h) 1is ounly required for the two basic
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properties of being an antisymmetric block circulant one

(1.5) [£) = 2(modN].

pl, = > S .

)y = gy Ta = pyoi T
(The antisymmetry requirement which corresponds to centered type differencing
is in fact not as essential, but will suffice for our discussion below.) Such

matrices admit the spectral represeatation
*
(1.6) D = NF AF

with a block dfagonal matrix A, whose diagonal cousists of the so called
amplification blocks
N-1

(1.7a) (a4 = A(j‘)olm z kzodkeijlkh-rm, 0<§<N=1;

since D 1s assumed to be antisymmetric, dk + dN—k = 0, and hence

, n
(1.7b) IR ) d sin(§kh),  O<j<N-1.
k=1
The discrete differentation as given by the spectral representation of
*
D, D»NF AF may be interpreted now as follows: from the gridvalues

vle<U<N-1’ we have the discrete Fourier modes Gm’ given by

N"l e
1 -iw”vh
[!V] .o z e v
W N 0

m

(108) [;]ma —T\‘w“N-l-n;

v?

then, each one of these modes 1s discretely differentiated as it muitiplied by

the ampliciation factor A(w ), and final'y, the differentiated modes
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Ao )Gm“ <&’ <Neln’ are transformed back inte the physical gridspace upon
-nfw -] -n
-1

*
multiplcation by NF = F .

2. Stability of Finite Tifference Approximations

Replacing the spatial derivative in (0.1) by its discrete counte . part

D = D(h), we end up with the finite~difference approximation(l)

(2.1a) 3,9, (6) = AGx DM [v ()] + Blx v ()3

introducing the block diagonal matrices A = diag[A(xo),"',A(xN_l)]

~

g = diag[B(xo),"°,B(xN_l)], it can be put in a matrix form

(2.1b) atg(t) = Alv(t) + Bv(t).

The time-dependent difference equation (2.1) serves as an approximation to the
differential problem (0.1), in the sense that any smooth solution, u, of

(0.1), satisfies (2.1) modulo a small local crcuncation error I(h) = I(h;t)

(2.2) 2,8(8) = AD(E) + Bu(t) + T(hse).

The approximation {s said to be accurate of order o 1if H#T(h)I -é?[ha].

With D =D for example, one obtains a difference approximation which is

2g
accurate of order 2s, ﬂlzs(h)l -é?[hzs]. To link the local order of accuracy

(I)Also termed as the method of 1lines, to distinguish from the fully
discretized problem in both space and time.
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with the desired global convergeace rate of the approximation, one has to

verify its stability. That is, the approximation (2.1) is said to be stable

1f for all gsufficiently small h we have

(2.3) lexplane 10 < R 2 K,  Oce<t.

Obgerve that the stability definitioa 1is independent of the lower order

term, By, the reasou being that stability in the above gense is, in fact,

insensitive to such low-order perturbations. This 1is the content of the

following classical perturbation lemma, whose proof 1s given here for

completeneass as it will play an essential role in our discussion below. (see

e«g. [15, Section 3.9), [16] and under a much more general setup [20]).
Perturbation lenma Let A be a given linear operator such that

texp[oe |V < Ky,  OSe<T.

Then, altering A by adding a "low- o:der" bouunded perturbation B, retains

the exponent boundeduness
Kr.lnl.t
lexp[ (AB)t]1 < R(t), R(t) = Xpe . 0<t<T.
Proof The solution of the inhomogensous linear differential eguation

(2.4a) atw(t) = Lw(t) + G(t), w(t=0)=w(0)

is given by
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} JL(E-E)
£=0

(2.4b) w(t) = e tw(0) + G (£)dE.

Applying (2.4b) with L =A+B and G = 0, we then get

e ]

w(t) = w(0);

hence (2.4a) can be also writtea in this case as the inhomogeneous problem

[(A48) t]

Btw(t) = Au(t) + Be w(0). Applying (2.4b) once more, this time with

L=A and G = Be A™®)tl 0y e obtain

t
o) = el8 o0y + [ (a0 g [came] oo
£=0

Equating the last two representations of w(t) which are valid for arbitrary

initial data w(0), we arrive at the well-known identity

t
exp[(A#B)t] = exp[At] + [ exp[A(t-£)]+B-exp|(AtB)E]dE.

3

Taking norms on both sides we find

t
K(E) € Ry + Ky IBEe | R(X)dE;

£=0
t -1 KT-NB'!'t
by Gronwall inequality, we conclude that IK(S)dE < UBH °[e —l],
and hence . “E=0 -
K(t) < Ry +KTon;u-|mu‘1-[eKT ° t--1] = xTeKT ’ t,

which completes the proof. (We remark that similar arguments apply for the

analogous question which concerns the discrete Eframework discussed 1in (15,
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Section 3.91).

From the preturbation lemma we see that stability is equivalent to the
houndedness of iexp[(gg+§)t]|, or -- what amounts to the same thing — to the
continuous dependence of the discrete solution y(t) on its i{nitial data
x(0)

[(an+p)t)
(2.5) ty(t)t = le v(0)# < K(t)-ly(0)P;

indeed if stability holds 1in the sense that lexp[égt]ﬂ is bounded, see
(2.3), then by the perturbation lemma with A = AD and B = B, so is
texp[(AD+B)t]R. On the other hand, 1f fexp{(AD4B)t]! is bounded then by the
perturbation lemaa with A = AD+B and B = -B, so is ﬂexp[égt]l-

Granted stabiliity, we can now estimate the global error
E(t) = u(t) - y(t): subtracting (2.1) from (2.2), we find that it is governed
by

3, E(t) = (ADHRIE(L) + I(h;e)

and hence is of the form

[Cap+p)t] t [cap+p) (t-0)]
E(t) = e E(t=0) + [ e T(h;3)dE;
£=0

using the perturbation lemma, we end up with the error estimate

t
IE(t)! < K(t)*BECt=0)U 4 sup NT(h3E)Me [ K(E)dE.
0<E<t £=0
Thug, LI aa a-order accurate approximation 18 Initialized with a-order
accurate data, E(t=0)0 ’éy[ha]. its stability will vetain a-order of

convergence later on, IE(t)) -é?[hu].
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Verifying stability is our main objective in the rest of this section.

We Start by rewriting

ADt =1 (Ap+DA) e +1/ (AD-DA)E

where by the symmetry of A and antisymmetry of D, the first term on the

right is antisymmetric aund, therefore, has a bounded exponent
lexp[ Iy AD+DA)L]N = 1;

hence, by the perturbation lemma, with the second term on the right viewed as
a low-order perturbation of the first, the exponent of the sum of the two
terms is bounded provided the second is

" 15 (AD-DA)E T
(2.6) texp[ADe]? < Ke ,  O<e<T,

Thus we are left with finding a bound for the symmetric part of
AD, Re(AD) =1/, (AD-DA), whose (p,q) block entry is givea by

14, (AD -1 . _ 1.
[ 15 (ap L),Q)]pq /2 d [A(xp) A(xq)]. 0<p,qsN-1;

{p~q]

gsince A(x) 13 assumed symmetric 27-periodic, NA(xp)-A(xq)l

< he Max "A’(x)'*Min[lp-ql,N-Ip-ql], and hence 15 (AD-DA) is  bounded
0<x<2n

entrywise and therefore in norm, by the matrix whose (p,q) block entry is

given by

h
—e NA’ e *Min - N~ LD S
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This last matrix is a circulant one. In the appendix we show, see Corollary
(A.8), that the uorm of such matrix does uot exceed (and in fact equals, in

our case) the absolute value sum of {its eloments along tts first (p = 0)

N~

row, %'HaxlA'(x)l‘ ) Hin[q.“-q]'ldql; recalling that D (s antisymmetric,
q=0
di + dyyp = 0, we finally ead up with the desired hound

n
(2.7) V15 (AD-DAY € e ) kI [e Max AT (L.
k=1 0<x<2n

Insterting the last hound fnto (2.6) we find

[ne ‘i kldkl'HaxlA'(x)l'T]

(2.8) texplape]t <o ¥ ,  OSt<T.

The above estimate serves as a discrete analogue to the standard eune~~y
estimate one has in the differential case, whose abstract version amouats to

11 (AGxID D A(x) )1°T  1fp sMaxIA’ (x) 0T
(2.9)!exp[A(x)Dxt]' <e - xox <e , 0SE<T.

In the case of a unon-constant A, the two estimates, (2.8) and (2.9), differ,
n

however, 1in the term h* ) kldkl appearing in the first; to guarantee
k=1

stability we assume this term to be hounded

n
(L) he Y kld | < Const.
k=1 dk

Conditfon (L) assures us that the differencing operator D 18 in a sense
local, thus reflecting the local nature of differentiacion Dx'
The antisymmetry, perliodicity (= clrculant form) and a locality

characterization are essenti{al properties shared by the differential operator,
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which the discrete differencing operator N should retain as well, in order
for an energy estimate (= stability) to be still valid uander the discrete
framercark.

Regarding the locality requirement, we cousfder for example the ceantered
divided differences D2s for fixed values of a: these operators are clearly
local as they employ {uformation extracted from a fixed number of uneighboring
grids -lues; this is also reflected in their matrix representattfon st wvhich

has a finite width, v, defined a3 (see (1.5))

w(D) = Max {kldk*oL
L<ksn
We have w(Q-st) = 3. Indeed, for such finite-width operators, 'dkl <

Const..h"l. and hence the locality condition (L) 1is satisfied

he t)\ kldkl < Const.wzQ),
k=1
yielding stable approximatfons. As s {ncreases, however, 9‘25 becomes a
full matrix which fails to satisfy the locality condittica (L). That is not
to say that the approximatfon becomes unstable, siunce the locality coadition
we have obtai. d is sufficient yet uanecessary for stability. Sufficieat and
necessar: locality counditions which guarantee stability arve, as much as we are

awar.:, not kuown; we expect, howaver, that a locality condition requiriung

.-Idkl to decay faster than 1/k, k=1,°***,n, is optimal for Lp-stability of
the general vuriable-coefficients problem. (We rvewark th‘;t in the constant
coefficienc case [and in general, with a definite covefficient A(x), where
m’ ciplication €Eirat by A'l(x) will bring us back to the former case}, we

have MaxBA’(x)V = 0 aud hence stability follows {ndependently of a locality
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restriction, lexp[&t]l <1, gee ?2.8).) To overcome the above difficulty,
arising with "nonlocal" methods, two standard types of remedy can be employed
- skew~gymmetric differencing and introduclog dissipation via smocothing; we

discuss them next.

3. Skew-Symmetric Differencing and Smoothing
The spatial part of the differential system (0.1) is -~ apart from low

order terms — a skew-gelfajoint one
A(x)D_ +B(x) =1 [A(x)Dx-H)xA(x)] + [B(x) =A@ ];

skew-gsymmetric differencing is based on exploiting this formalism. Rewriting

(0.1) in the form
3utx,t) = {1 (A3 u(x,0)42_(a(x)ux,0))] + [B(x)-1h A" 0 ulx,0);

and rew.acing the spatial derivative by 1its discrete couaterpart, we end up

with the approximation

(e = {15 [apspal + (-1 A" (o).

The stability of the approximation in its gkew-symmetric form is immediate:
the first term inside the curly brackets 1is antisymmetric and hence its
expouent 1is bounded by 1; by the perturbation lemma, therefore, the expounent
of the sum of the two terms 1inside the curly brackets is bounded by the

exponent of the norm of the secound
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texp[{ ¥, [aD+pA] + [B- 1o’ ]}e]t <o ,  0<e<T;

this is the exact energy estimate one has in the differential case. Thus
skew~gymmetric differencing, which is also available for a wide class of
nonlinear problems, ([17], maintains stability by retaining esseatial
properties of the whole spatial operator A(x)l)x + B(x) rather than
differentiation itself; this is done, however, at the expense of doubling the
total amouat of work required.

An alternative less expensive procedure to maintain stability 1is
smoothing, a topic which the rest of this section is devoted to. We start by
golag back to estimate (2.6) where we were left with bounding the symmetric
part of AD, Re(AD) =15 (AD-DA).

Employing the spectral represenlation of 0, which we write as

~

1
D= (N 1/er)"g(n 2 ¥), see (1.6), we ohtain

1 1 1/2 * 1/2 l/2 * l/2
3.1 £ (Ap-0a) =y (aly "2R)"A(n 2¥) - (v 2#)"A(N 2E)Al;

1/2 1/2 *

multiplying by N “F oa the left, by (N !‘) on the right, and observing
1

that N /2! is uaitary (e.g. (A.6) below), we find that the matrix above is

unitarily similar and therefore equal in norm to
1 1 1 1 g1* 1p p *
(3.2)  t1p ap-pa)t =1pn{(n 2r)a(w 2r) 14 - A{(w 2p)a(n 2e) L
Next, we turn to examine the matrix inside the curly brackets, whose (p,q)

block entry is given by

YRR AU 1(q=p)vh,
(3.3) (v 2r)al 20)} szoA(xv)e ;
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using the Fourier expansion

-]

L - 1 —qug
Ax) = ] aqwe™, Ao = 5 [ A,
(mm E=0

it can also be expressed as

N-1 N-1 » fux
§ LA TP L LT (] Kwe  V)el(IPI
v=(0 V=) (i=ew

(3.4)

® . 1 N-1 1(q-p+) Vh © L

= 1 A Le = 1 A(p-qtN).
Wm0 v=0 jz..m
lb 1& *
Having the representation of {(N P]Q(N P) } in (3.4) and recalling the
diagonal structure of A in (1.7), we conclude on account of (3.2) that the
matrix 1/ (AD-DA) 1s equal in norm to the matrix whose (p,q) block entry is
given by
(3.58) (A9APD)e | Ap-gram)  0cp,qen-L.
J==e

We note that the locality conditfon (L) can he deduced agaian at this stage,

1f we are to proceed as follows: from (1.7hH) we find

- - u
(3.5b) A @) a0 L9yl 4, * (sin(q kh)-sta(p"kn)).
kel

Since

|sin(q kh)-sin(p“kh)| < keh*Min[|p-q},N-lp-al],

the matrix in (3.5) 13 bounded entrywise and therefore in norm, by the matrix

whose (p,q) block entry is given by
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The matrix in the above curly brackets is a circulant oue. As before, its
norm does unot exceed the absolute value sum of its elements along the first
row (p=0) <-- see Corollary (A.8) below; this sum in turm can be estimated in
terms of the derivatives norm of A(x). Thus, assuming the locality condition
—= he 3 k|dk| < Const. -- we conclude that U@(ég-gg) and hence exp[égt],
0<t<T§-;ave bounded norms, i.e., stability.

The merit of the representation (3.5) lies, however, in the possibility
of expressing a locality condition in terms of the amplification blocks
asgociated with 0, A(k’)~1m, rather than its eantries d,-Im. To this end we
proceed as follows:

The matrix in (3.5) is writtean as the sum of two -— the first takes the
zero j—index which we rewrite as

NCIR N

(3.6a) o e MU CSUE

the secound takes the rest of the j~indices

(3.6b) (A@APDYe T Ap-ghim).

3*0
It is the property of the finite difference methods that the first matrix in
(3.6a) 1is bounded. Vor, A(j‘) = 21°Xdksin(j’kh) represents the discrete
differentation of the 3J° mode and as such, the order of magnitude of the
difference |X(q‘)-X(p‘)| should not excced Const.|q”-p“|. Hence the matrix

in (3.6a3) {3 bhounded entrywise and therefore in norm, by the matrix whose

(p,q) element is given by
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Const.|p=-ql *!A(p=-q) I;

the norm of such a Toeplite matrix —- gee Corollary (A.ll) -— does not exceed
COnst-'Nillwlli(m)l. which in turn, can be bounded by the norm of the
detivat:;ga of A(x). Regarding the boundedness of the second wmatrix in
(3.6b), we note that for p-q bounded away from JN,j # 0, say |p-ql

< 6N,0 < 1, we have | Zoi(p-q+jn)l < CY’eN"Y and hence for these nonextreme
indices, the entries j'!.n (3.6b) are a’priori bounded ~- in fact,they are
negligibly small. For the rest of the indices, when |p-q| ~ N, i.e., when

®#p° ~Fq" ~n, we must require the boundedness of a(a ),X(P ). Thus the

locality condition amounts to the boundedness of the amplification

blocks, 2\ )'Im, asgociated with the high frequencies [3°| ~ n. If this is

the case, the matrix h&(gg—gg) in its unitarily similar representation (3.5)
is bounded and stability follows from (2.6).

The above situation is typical for all discrete methods, whose accuracy
is determined by the exactness of differentiating the low modes, X(j’) ~ 137,
while for their stability we need the boundedness of ll(j’)l associated with
the highest mwodes, |j°| ~ n.2) The combination of the two guarantee
convergence, as the low modes carrying most of the information are accurately
represented, while the highest modes are inaccurately represented, yet
stability assures us that they are not amplified and hence rapidly tead to
zevo, just as is the case in the differential problem.

The two requirements -- accuracy and stability -- are well accommodated

in difference methods having finite degree of accuracy; consider for example

(z)lt should be emphasized that this stability restriction is, of course, only
sufficient. 1Its necessity is still an open question.



=21- ORIGINAT, tagrs 4

OF POOK QUALITY

the second accurate method where we have kéj‘) - 1h_lsin(j'h), see (1.3b2),
and hence X;j‘) ~ {§° for 13°| ~ 0, i.e., accuracy, yet

“;j')| - Ih-lsin(j'h)l < Coust. for i3°! ~ n, i.e., stability. The
situation 18 less favorable, however, for highly accurate .mehtods (of order
N or more): the accuracy requirement A(j‘) ~ 1§ for the highest modes
contradicts the stability restricction IX(J‘)I < Const. as originated from
the locality conditon. Observe that this latter contradiction still leads to
a bound proportional at most to N, which corresponds in the differential case
to the familiar situation of "losing one dertvative."‘”

The smoothing procedure aiming at dissolving this contradiction by
bounding the amplification factors assoclated with the high frequencies (or
more generally —— the modes which these amplification factors multiply), yet
leaving the lower accurate modes unharmed. For example, consider the so
called Shuman filtering vhere

v, —* 1, (v +2vv)

(o) Y -1
is applied to the right hand side of (2.la). 1In the Fourier space, it amounts
to the further multipliction of the 3" mode, \;ja. by 4 +(1+cos(3°h)); that
is

‘;j' —1p (1+cos(j‘h))'sj‘.

In other words, our smoothed discrete differentation operator takes

D~Shuman
the form

N1a fact, as we shall see later on, we have a loss of “one-half" derivative.
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with

2 man ™ aiag( 15 (1+cos(-nh) )’Im, e+, 15 (14cos(( (N-1=n)h) ).Iu] s

which merely says that the amplification factors X(j') were replaced by

A (30, 15 (14co8(3°h)). For the highest modes we now have the desired
boundedness -~ in fact |X(j')°1/2 (14cos(3°n))] ~0 for 13°| ~n. This is
done, however, at the expense lowering the overall accuracy to a second one
- A(j‘)'llz (1+cos(3“h)) ~ 13° +@[h2] for |3°| ~0. 1In general, a

linearly smoothed discrete differentation operator D, may take the form

*

(3.7a) D, =W A, F, A, = A2

with

(3.7b) 2= diag[o(-n) .Im’ ...’O(N-l-ﬂ) .Im] .

The requirement of both accuracy and stability can be now put in the concise

form
) w1 for 13°l bounded away from n (= accuracy)

(3.8) o
+0 for |3°] 4 n (= stability)

In [12], Majda et. al. advocated the use of exponential cut-off

0~ smoothing when dealing with the propagation of singularities in linear
probl-ms. In ([11], Kreiss and Oliger suggested a nonlinear smoothing, whose
linearized version amounts to a polynomial cut—off of degree 2> 2. In fact, a
polynomial cut-off of degree one or more will suffice to compensate for the
loss of one derivative we have observed e rlier. To work out this last case

in some detail, fix © <1 and let
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(3.9) o - 1
Const.(]4"|-6n)” 6n < 13°] € n.

The adjusted amplification factors are now given by X(-r) —_— X(j‘)o(j‘)- 4
fixed portion of the N frequencies is left unchanged maint<ining the
original order of accuracy. Regarding stability, we refer back to tue real
symmetric part AD in 1its unitarily equivaleat form (3.5), whick *- written

as the sum of two, see (3.6): the first

202 (a”)_5 (P ;(pT)

q»_p; )'(p-q)'A(p-q)

- (

is bounded by the norm of the derivatives of A(x) as we a-gued before; the

second matrix

(A6 EV )0 T Kipegramy

J#0
is likewise bounded. Indeed, for |[p-q| < -]'—-zt-g—'N, its entries are negligibly
small — they are bounded by N* X 1A(p-q+iN)} < cY eN-Y'H. For
9

o j*0
{p~ql > "%E*N we either have p > (1+6)n, q < (1~6)n, f.e. p* > On,

q° < -6n, or, the roles of p and q are reversed. In either case
Ip”l > 6n, 1q°| > 6n and therefore the latter matrix is essentially bounded

entrywise and therefore in norm, by the matrix whose (p,q) entry is given by

(3.10) er -,ﬁ_en)l'jzc':;(p-qﬂml'lm Ip"1,1q"1>8a.

A direct calculation shows that this matrix is indeed bounded in terms of the

norm of the derivatives of A(x).
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Part II. The Fourier Method

4. The Fourier Differencing Operator

As before, we let v(x) be a 27-periodic m-dimensional vector-func.ion,
whose values v, = v(x,) are assumed known at the gridpoints
x,='h, h= 2—;;-; to simplify the notation we consider first the case of odd
number of gridpoints, N = 2n+l, V = 0,1,°°+ 2n, By Fourier differentiation we
merely mean diffecentiation of the trigonometric interpolant of these

gridvalues. That is, one construct the trigonometric interpolant

-~ n -~
(4.1a) Vx) = ) v el
Wmteayy

where the discrete Fourier coefficients v, are givea by, compare (1.8),

- 2N
1 -1 Wwvh
(4.1b) Vo "N X v,e R

w -pfwsn,
V()

The Fourier differentiation then takes the form

~ n ~ dux
(4.2) Hx) = ) twe .
Wm—pn

The above procedure consists of the following three basic steps. First,

transforming from the discrete space y = (vo,'",vzn)‘ into the Fourier

space of amplitudes y = (v_n,'",vn‘.‘:

~

(4.3) = Fy

next, differentiation in the Fourier space takes place:
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v —A v
~ ~F~

with AF denoting the block diagonal matrix

(4.4a) Ap = diag[-in'lm,-i(n—l)'lm,"',1(n-l)'1m,1n°1m];

'~

finally, the ¢-fferentiated amplitudes Ay are transformed back iato the
digcrete physical space:

3 [v] = ¥ [~F~] Flanr.

Added altogether, the Fourier differencing operator F amounts to
nultiplication by

(4.4b) F = NEAF

which can be efficiently implemented by two FFT’s and N scalar
nultiplications requiring 8NlogN operations.
An explicit representation of the Tourier differencing matrix, F, can be

obtained by differentiating the interpolant formula, cf., (22, Chapter X]

2n
2 . =sinl(rﬂ-l{'zzﬁl
v(x) = Tobl VEOV\,‘(X"‘\,)’ (%) 2sin(IpE) *

¢ cod
Ely = = ZetalGe-D /@) ) o’

giving

(4.5) 0<4,k<2n.
Thus, 1t falls into the category of antisymmetric block circulant matrices

digenased above, see (1.5),

(F) o I 231

(4.6) [Elyy = dpecpy PR (¢T38}
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with a spectral representation given by (4.4). Indeed, a straightforward

calcualtion, cf., Forenberg [3], shows

A? - li‘AZs;

[ Raad

that is, the Fourier differencing can be viewed as a special centered finite

differencing, based on an_ever {ucreasing number of gridpoints extended in a

eriodic way, F = 1imD Coutinuing with this point of view, we coanclude
g+

28’
that while the Fourler differencing enjoys an "infinite order of accuracy" —
a statement to be made precise below — it i{s a nonlocal one. We would like
to examine the role these properties play in the Fourier method, based on

replacing spatial derivatives by Fourier differencing. We start by discussing

the all important aliasing phenomenon.

5. Alfasing
Let w(x) be a smooth 27~-periodic m-dimensional vector-function, with a
formal Fourier expansion

(5.1a) wix) = ) ;(w)eiwx
[}

-

vhere the Fourier coefficients w(w) are given by

- 2n
(5.1b) () =5+ [ une e
£=0

Its {nterpolant ;(x) based on the sampled gridvalues v(xv),v = 0,1,°* 2n,

is given by
~ no.
(5.2a) wix) = ) we
W=—p)

{ux
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with the discrete Fourier coefficients

- 2n
(5.2b) v, = -}13 ] w(x)e ~iovh <.
v=(

The relation batween the Fourier coefficlents w(w) of w(x) and the
coefficients v of its interpolant ;(x), is contained in the following

Aliasing Lemma For w(x) as above we have

(5.3) v, = 1 w(eHn).
k:—w

Proof Inserting (5.la) into (5.2b) we ohtain

- 2n 2n » fux
v, = %‘-' ) w(xv)e-iwh - %' Y wwe v]e-:l_mv\:;
= val) vaf) Y=o

By th- issumed smoothness of w(x), summation can be interchang.d, yielding

k-]
1v [p-w -
-1 w(n) i ety meatn LY G,
=00 v=( Km0
as the second sum in the middle term is aonvanishing only for those indices
W such that (u-w] =0, i.e., b = w + kN. This completes the proof.
Next, we consider the error between the gridfunction w(x) and its
~ s {wx
equidistant interpolant w(x). Rewriting w(x) = [ 2 + Z ]w(m)e and,

Joj<a jui>n
with the help of the aliasing lemma,

1wx

v = § w@e™ s T (] w(oHan)e
lul<n jo|<n k#0
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we see that the difference w(x) - w(x) is given as the sum of two basic
contributions: the first, the truncation error, consisting of the higher
truncated modea for f[w| > n
(5.4a) Truncation [H(x)] =) w(m)ewx.

jui>n
and the second, the aliasing error consisting of the higher aliased modes
which were folded back on the lower ones, {®w} € n, because of the finite

resolution of our grid

(5.4b) Aliastag [w(x)] = =} { ] w[wtk@ot1)]lel“™.

|w| <n k#¥0
Observe that while the truncation error invlicoves modes higher than n, the
aliasing error involves wodes less or equal to n; hence the two are
orthogonal with respect to each other, and the size of the difference

w(x) - w(x) 1is given by
(5.5a) tu(x)-w(x)12 = ITruncation(w)’? + 1Al1ssing(w)lZ.

By Parseval’s relation, the two squared terms on the right are given

respectively by

(5.5b) l'l'tuncat:mn(w)|2 - ) |;(m)|2
jwl>n
(5.5¢2) Iliastag(w)i2 = T | ] work(2es)]|2.
|w]<n k#0

In both terms only the high amplitudes -- those associated with modes higher

than n ~ are being summed. Since these high amplitudes tend rapidly to
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zere, {.e., for smooth w(x) we have |[w(w)| < c\,(lal-lml)'Y for any Y 3> O,

it followa that the two terms have the same error contribution of order
CY'N(-YH). Likewise we find that the derivative of w(x), 3xw(x). differs

from the differentiated fnterpolant, 3x;(x) by

R a3 s « 1 judl@i? s 3 1er?) ] efeskcen])?
{wi>n lwi<a K0

C12) g pointed out above, the Fourier differencing

which is of orxder CYN
of w(x) 13 in fact the exact differentiatfon of the interpolant ;(x). Ve
therefore conclude that the error we commit by differentiating ;(x) rather
than w(x) 1is of the negligibly small order CBhs for any § > 0. 1t is in
this sense that we say the Fourfer differeunciug has "infinite order accuracy."

Finally, we use the aliasing lemma to show the {sometry between the
discrete and continuous space functions. Precisely, consider the discrete
aspace of gridfunctions y = (yo,"'yzn)'.g - (zo,'".zZn]' equipped with the
discrete imner product (°,*)

2n
(5.6a) (£,2) 2he )2y,
0

V=
as the discrete analogue of the space of 2w-periodic vector functions,

y(x),z(x) with

T oa

2
(5.6b) (y(x),2(x)) = [ 2" (E)y(E)de.
0
The above mentioned isometry now takes the concise form

(5.7) (¥(x),2(x)) = (y,2).
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Indeed, consider the scalar 2v-periodic function w(x) = 2”?‘(:);(:). While
the left~-hand side is, by definition, ;(w-O), the right hand side is, by
definttion, ;'w-o' According to the aliasing lemma, the two differ by the sum
of amplitudes associated with aliased modes higher thza 2a, X;[k(2n+1)].

This sum is vanishing, however, since w(x) being a trigonou::gc polynomial

of degree 2n at most, coatains no modes higher thaa 2n.

6. Stability of the Fourier Method

In this section we study the stability of the Fourier method where
spatial differentiation in (0.1) is carried out by Fourier differencing.
According to the perturbation lemma we can safely neglect the low-order term

agspuming B = 0, and hence our approximation takes the form

(6.1a) Btvv(t) - Lvl:"x\,
with the operator L given by
(6.1b) L= A(x)Dx.

Indeed, the stability question as discussed above is relevant here, i.e., the
unboundedness of the amplificatfon blocks, see (4.4a), Al(,j‘) - :lj’-Im
requires smoothing of the highest modes, in agreement with the nonlocality of
the method, see (4.6), h* ? kldéF)l = )(1/h). The representation given below
is from a somewhat differ:;lt point of view, and in fact, it is the one that
motivated our discussion in Section 3 above.

Multiplying (6.1la) by hv: and summing over all gridpoints we obtain
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2n-1 2n-~1

h'z vav(t)-h‘z V*Lv

- (L; x)o
=0 tv V=0 lx"x\) il

Taking real parts on both sides and making use of the isometry coacluded in

Section 5, we find

4~ 2p-1

(6.2) Elvlz = 2Re[h ; Vo) o] = e[ @F.0)] = 2re[ (13,3)] -
Vi

The crucial step now, involves splitting the right hand side into the sum of

two terms: the first consists of the exact differentiation

(6.3a) we[(17,9)] = ([L4*]5,9),

the second consists of the deviation from the exact differentiation
(6.3b) 2Re[[§-L$,$)];

that is we have

~

(6.4) are[(Lv,v)] = 2Re[{1¥,Vv)] + 2Re[(Lv-1¥,V)]

in complete analogy to the splitting of the matrix in (3.5) into (3.6a) and
(3.6b) as we introduced before.

That the first term in (6.3a) is bounded by Const-l';lz is a property
solely of the differential operator ¥, called semi-boundedness, which can be

easily verified in our case by integration by parts,

(6.5) H[LL*]9,9)] < Const.*1912,  Const =15 *MaxtA’ (x)!
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in complete agreement with the exponential behavior indicated in (2.9). Thr
we are left with estimating the second term in (6.3b). It 1s exactly this
term which measures by how much we deviate from the differentfal energy
estimate whose abstract version quoted in (2.9).

To this end we recall that the difference between w = Lv and its
interpolant v = Ee consists of two basic contributions -- the truncation
error (5.4a) and the aliasing error (5.4b). The point to note here is that
the truancation error being the sum of modes higher tham n, is orthogonal to

the n-degree interpolant ;, and hence 1its coatribution to the deviation term

(6.3b) 1s completely suppressed. In other words, it is solely the aliasing

error in the representation of the differential operator L -- or what amounts

to_the same thing, of the cuefficient matrix A(x) — which determines the

stability of the discrete approximation (6.1). To see how it comes ahout one

compute the amplitudes of v as the convolution sum

n ~ ~
(o)) = ) 1q-A(u-q)v,  -mcwee;
q=-n 4

hence the aliasing error is given by, see (5.4b)

Aliasing[L;] = -Z { 2 2 1q°A[m-q+k(2n+l)]; }eimx.
wl€n |q}<n k*0 d

Multiplying by v and making use of Parseval relation we find

~ -~ ~ ~
(L;-L;,;) (Aliasing[L;],;] = -1'2 v*'q' XOA[p-q+k(Zn+l)]vq;

lpl,lql<n P k#

taking the symmetric part we finally conclude that
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(6.6) 2Re(Lv-Lv,v) = e} v {(q-p)' ) A[p—q+k(2n+1)]}v
lellql<n P k#0 d

Our aim is trying to estimate the right-hand side in terms of I;I2 -- by so

doing, then together with (6.5) we will end up with an energy estimate

(6.7a) E%IQnZ < Const.-1912,

whoge integration assures us the continuous dependence of the solution on its

initial data, i.e., stability, see (2.5)

(6.7b) 1y(e)12 = 19(e)1? < k(o) 15(0)82 = R(e)ty(0)12.

To assert that the right-hand side of (6.6) does not exceed Const.l;I2 =

Const.*i val2 for all possible amplitudes A
|w|<n

equivalent to assert the boundedness of the watrix whose (p,q) eatry is

is, by definition,
given in the above curly brackets

(6.8) (] = @-p)* ] Alp-q+k(2n+1)],  -ncp,qsn,
Pq k*0

compare with (3.6b). The above terms represent the pure effect of aliasing on
the coefficient matrix  A(x) -- 1in the constant coefficients case, for
example, no aliasing occur, A(w) =0, w #0, so the terms in (6.8) and hence
that in (6.3b) are vanishing which agrees with the earlier deduced stability
in this constant coefficients case. Returning to the general variable
coefficients case we first note —— regar?'ng the (p,q) entry ian (6.8) —
that for |p-q| bounded away from 2n, |p-q| < 9+2n, 0 < 1, these entries are

negligibly small, since by the smoothness of A(x) we have
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¥} Alp-qtk(2ne1) )0 < c, N
k#0 ’

however, when |p~q| approaches 2n, that is, when ptn and q¥-n or vice

versa, 2 A[p—q+k(2n+l)] contains the lower modes of A(x) whose amplitudes
k#0

are of size @(l), and hence these entries are of size @‘(N-Znﬂ) —= the

matrix whose (p,q)  entry is given in (6.8) {s, therefore, unbounded, mno

matter how smooth A(x) is. Consider for example the case where A(x)

consists of only one mode — the only nonzero eatrics in (6.8) are thea the
(p,q) = (4n,¥n) ones, given respectively by 32n;(w=-31), wvhich amount to the
unboundedness of d- (Putting it in a different way, we see that im constrast
to local finite-difference methods, compare (2.7), Re(AF) -1/2 (AF-FA) 1s
unbounded, no matter how smooth A(x) 1is; indeed up to unitary similarity --
the latter differ from .2/ by the bounded term in (6.3a)).

Nevertheless, the above unhboundedness does not necessarily imply
instability, as much as {t indicates the shortcomings of the above method of
proving it. We observe that the difficulty arises when trying to estimate
the (p,q) entries with ptn and q¥-n or vice versa, in either case, when
Ipl,lql ~ n. These aliased entries interact with amplitudes associated with
high modes ;;,:vq, see (6.6), which are expected -- if the method is stable ~-
to be of a negligible small size. That is, despite the unboundedness of .ﬂ
in (6.8), we can still have the boundedness of the aliased term in (6.6)
provided a° priori information on the decay rate of I\;wl, o] ~n 1is at our
digposal; it is well known, however, that the Ly-norm l!;ﬂz i3 too weak to
derive such an a” priori information.

With this aan mind, smoothing may be viewed as a procedure aiming at
giving us such a° priori i{uformation about the size of the highest

amplitudes. Consider for example the case where A(x) consists of fixed
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number, say r modes; then smoothing by cutting a fixed number of modes --
the last r ones, ;m = 0, |w|>n-r == will guarantee stability, as the term
in (6.6) will vanish in this case. (In particualr, when r = 1, one only
needs to estimate the last amplitude ;“. In the case of geven number of
gridpoints, such an estimate exists, since F being ar even order
antisymmetric matrix has a double zero eigenvalue; this leads to the

Hl-stability in this case derived in [7].(6)\ In general, 2 milder smoothing

as the linear cut-off introduced in (3.9) will suffice for stability.

In closing this section, we remark that by rewriting (6.6) in the form

- -~ ~ IS
2Re(Lv-Lv,v) = 1} iTplev o [—S22) . § A[p-qtk(20+1) ]} VTFTQTov ,
lel,lql<n P /I¥TqIVI+Tpl k#0 q

where the matrix in the last curly brackets 1is bounded, then together with
(6.5) we are lead to the estimate
~ ~ ~ . sly -
(6.9) Fin? < Const-lvlzl/z, nvnzll = 1 aselh 2
H B2 |wltn

That 1is, there is a loss of '"one-half" derivative. If some dissipation is
present in the system, e.g., with L = A(x)Dx + Di, the gain of one derivative
from the second spatial differentiation dominates, and we end up with the

desired stability, e.g. [11].

() see the appendix for details.



36~ AGE 1S
ORIGINAL P
OF POOR QUALITY

Part I11T. Galerkin Methods

7. The Galerkin Procedure

In this section we start discussing the Galerkin procedure, whose basic
idea is to reduce our {infinite dimensional differential problem by projecting
it on a finite-dimensional subspace. Let the latter be spanned by a system of
linearly independent 27— periodic functions ¢p(x), -n < p < n.

To project (0.1), we seek for approximation of the form

n

(7.1) vix,t) = ] v(g,t)d (x)
q=-n d
satisfying
3
(7.2p) (-a'::! - LV,¢p) = 0, P=-n,°**,n.

Inserting (7.1) into (7.2), we obtain for the vector of generalized Fourier
coefficients, y(t) = (v(-n,t),"',v(n,:)]', the following system of ordinary
differential equations

(7.3a) M3 () = Gy(t);

here, M and G are (2n+l)- dimensional block matrices whose (p,q) entry
is given respectively by

(7.3b) [l g = (o0 )ory, o] = (Lo 0]

The stability of the resulting system is a direct consequence of the
semi-boundedness of the differential operator 1L, cf. (6.5) —— integration by
parts ylelds

Re(lw,w) = U&([L+L*]w,w) < Const'“wﬂz.

for any 2m~periodic vector-function w(x). Indeed, multiplying v(p,t) by
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(7.2p), adding and taking real parts we find
(7.4) Ypgdiv(en? = ge(3Y,v) = Re(Lv,v) < Const.tv(e)i?;

iategration of the last inequality gives us the usual stability estimate --
compare (2.9).

Unless chosen with care, the basis functions ¢k(x) way lead to an i1l-
conditioned mass matrix, M, whose inversion required in (7.3a) can be still
found numerically disestrous. The most extensively studied choices of basis
functions which avoid such situations are essentially two. The first uses
local base functions inducing sparse, well-behaved mass matrices, leading to
finite-difference/finite~element like methods; the second uses global,
orthonormal base functions like

%, encpen,

¢p(==) - /;;e
where the mass umatrix reduces to the identity, M = I. We continue by
discussing the latter case.

The expansion we seek in (7.1), amounts now to the truncated Fourier
expangion, whose Fourier coefficilents i(t) are determined by the Galerkin
procedure
(7.4a) 3,0(t) = Gy(t)

where G 1is given by

2 A
7. [e] - ur—’f Ax)e HP"D%gy = 1qeh(pmg), -np,qen.
0

(As before, see (6.1b), we have neglected the lower order term assuming I =
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A(x)Dy ). Ve remark that implementation of the Galerkin procedurc can be
zarried out fast, i.e., using @ (NlogN) operations, provided the exact
Pourier coefficients X(m),|w|<n, are given. For, the procedure consists of
two basic steps: first, differentation which {8 translated here to
multiplication by the diagonal matrix AP’[AF]qq = iq* In is taking place,
requiring N = 2n+l operations; and next, multiplicaiior by A(x) reflected
as a convolution sum in the Fourifer space is in order, which requires
nultiplication by the Toeplitz macrix i(p-q) - indeed, multiplication by a
general Toeplitz matrix can be carried out fast when first imbedded ianto a
circulant oune, see the appendix for details.
To obtain the Fourier coefficients

b

. 2
(7.5) Alp=q) = 5+ (f) Alx)e 1Py

one may use different quadrature rules approximating the Integral on the
right-hand side. This in turn leads to a whole variety of discrete Galerkin

methods which include the Fourier method as a special case.

8. Discretization

The Fourier-Galerkin procedure in a component-wise form reads

{8.1a) 3t3(p.t) - Eﬂ(p-q)-iq';(q.t)
q=-n

where A(W) 18 the Fourier coefficient

- n
(8.1b) Adw) = -i-‘,; 7061“”‘“:)“.
x-
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To approximate the integral in the right-hand side, we use the trapezoidal

rule, based on the N = 2ntl equidistaat pciats x, = vh,h = H.

- s lox,,
(8.2) YORSS XoAcx\,)e ;
V=i

since A(x) 1is assummed periodic, the trapezoidal rule serves our purpose a:
any other high-order quadrature rule -- in fact, it 1s "infinitely order
accurate" in the precise sense discussed in Section 5 above, cf. [2, Section
2.9).
Introdvcing the approximation (8.2) into (8.1a), we find that the term
i(p—q) is replaced by, see (3.3)
R-1

(8.3) A(p_q) ~%- XOA(xv)ei(q-p)\’h - [NPAI*]N;
V=i

thus, the abcve discretization result in a system of ordinary differential

equation for the vector of unknown amplitudes, still denoted here by v,
- * -
(8.4) 3tx(t) = NFAF sz(t)-

This 18 exactly the Fourier method for the discrete Fourier amplitudes

;_(c) Fy(t) = (;_n(c).-~*.;n(t))‘ -- multiplication by ¥! on the left

brings it back into {ts familiar form in the physical space, see (4.4b)
*
(8.5) 3,4(t) = A(NE APy(t) = ARu(t).

That 1s, the exact spatial differentiation 13 carried out on the interpolant

:;, compare (6.la).
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To summarize, we have seen that equidistant approximation of (8.3) based
on N gridpoints reduces the Fourier-Galerkim procedure into the Fourier

method; the difference between the two lies exactly in the aliasing term

X.;(p-qi-jﬂ) -~ according to (3.4), this is the exact difference between the
ﬁ:ht and left-hand sides of (8.3). Siuce the Fourier-Galerkin procedure was
shown to be stable, we thus shed a different light on the conclusfioa that
stabilicy of the Fourier wmethod {is solely determined by aliasing errors. To
suppress the latter, one may either smooth or, alternatively, discretige the
integral on (8.1b) using more than N gridpoints. We turn now to discuss the
details of the latter case.

Let M = (1+€)N be the number of gridpoints x, = Vh,h = -21,

Vu0,1,*+*M~1, and use to trapezoidal rule to approximate

~ M-1
@.6) Alp=q) ~ 5+ ] ACx el (TP,
v=0

when iaserted into (B.la), the resulting system is given by

" n 1 M-1 1(q-p)vh -
(8.7a) av (t) = ) [z ] Ax e TP M egqev (1),
t p qa—n H \).0 v q

Here, we adopt the notation of the discrete Fourier coefficients for the
computed amplitudes, \;w(t), in the spirit of earlier agruments. Observe that
the matrix whose (p,q) entry, -u<p,q<n, is given in the last curly brackets,
is not a circulant anymore as in the Fourier case where M = N, yet its
multiplication as a Toeplitz one can bhe carried out fast. To verify
stability, we rewrite the (p,q) entry in the last curly brackets with the

help of (3.4)
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(8.7b) 3 v (t) = Y[ Y acpeq#i) Jo1qev (o).
p q=-n j-_n q

As usual, we break the second summation into two parts

1 A(p-q+iM) = A(p—q) + ) Alp-q+iM);
gu—re 3%0
the first corresponds to the semi-bounded differential operator ani can be
estimated as before, while the second represent the pure effect of aliasing
which in this case is completely controlled since by the saocothness of A(x)
we have

T 1A(p-q+iM) 1t < C_(eN) Y, v+0, ~n<p,q<n.

Y

j*0
Indeed, a second look in (8.7b) reveals that the approximation (8.7) can be
viewed as the standard Fourier method based on M modes, the last (1+8)—1H

& ))

of which were cut off (in the notation of (3.8), we have © =0 for

(l+e)-lH < |j] < M) - such smoothing guarantees stability.
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Appendix

A, 0On Toeplitz and Circulant Matrices
In this section we record some well-known iunformation about Toeplitz and

circulant matrices which proves useful within the discuasion above
A block Toeplitz matrix 9‘ consista of wm~dimensional block entries,

the (3,k) of which depends only on its distance from the maian

diagonsl, [Fl,, =t

(A.1) ™ty t ty* * tes S
t-l tﬂ-:‘.
WA R :
: t,
- t
LGy B2y "t g o

Thus, a Toeplitz matrix is completely determined by a (2N-l)~dimensfonal
vector t = (:1_“,°--,t,),---:n_l], its entries, t,, -(N-1)<2<H-1, are being
m-dimensional blocks.

If further, the vector t 1is defined on 1its uegative indices as the
periodic extension of the positive ones, t_o ™ tyope 0<i<N=-1, 1l.e., 91“ only
depends on (k-3){modN}, then the matrix 1s a block circulant

one, €, (€, = € 1mt tmoan)
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N-1 N-2
(a.2) €= Glegaeriey,y) = | o2 .
. c;
;2 %

|1 %2 T N2 S %o

Thus, a circulant matrix is completely determined by a N- dimensional vector
e = (CO'."'CN-I)’ its entries, s 0 < £ < N-1, being m-dimensional blocks.
The essential ingredient in studying circulant matrices, 1is that they

admit the spectral representation

1 *® - 1
(A.3) @© = (v 20)"2 (v 2.
Here, P denotes the block Fourier matrix, compare (1.4)
= l- _ij ‘kht £
(A.4a) [r]jk ~ee I,  0S3,keN-1

.

with the conventional notation
(A.4b) £ = %-n, n £ integral part of N/2,

and Ac is a block diagonal matrix given by

N-1 -
- 13"%h,
(A.5) [Ac]jj Egoe ¢y
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Verification of (A.3) s a straightforward ome - the (j,k) entry of the

right-hand side of (A.3) amounts to

(v ®)"a, ( & Pl - N‘:E: [F*]ip[éc]ppmpk

N-1 . N-l . . -
=N ) %'eip jh_[ § olP lh_c"]%.e—ip kh
p=0 =0
N-1 N-1 .
-~ 1p” (2+3-k)h
=z Te, Te'P (&+3-loh,
2=0 “p=0

the second summation on the right is vanishing unless £+j-k = OfmodN], i.e.,

unless 2 = (k-3j)[modN] where

N-1 N-1 -
LT T et ag-iom

N £x0 pso '1'(k"j)[modn] = c(k—-j)[mod“] E [?]Jko

Consideration of the block identity matrix Iy as a circulant one, with

e = (Im,Om,"'Om), gives us from (A.3) and (A.5) that
1 1
(4.6) 1, = (v 26)"(x 2E);

1
that is, the matrix N /21’ is a unitary one. Since the spectrum and the L,-
porm of a matrix are fnvariant under such unitary transformations, it follows
from (A.3) that for general cfrculant matrices, % , both are identical with

~

those of block diagonal I\c. In particular we have

Lemma (A.7) For a block clrculant matrix %(c) we have

N-1 1322—;
(A7) 1)l = Max B fe  Tech
0<jsN-1 2=0
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Proof The norm of a block diagonal matrix is given by the largest norm
of its diagonal entries. Cosmetic reladexing of these diagonal entries in
(A.5) gives us (A.7).

As an immediate corollary we have

Corollary (A.8) The norm of a scalar circulant matrix does not exceed

the absgolute value suu of its elements along its first row.
Proof 1In fact, from (A.7) we have the more general

N-1
(A.8) B < 1 e
2=0
The corollary 1is just a restatement of that last inequality for the scalar

case, where c, = c2°1m.

Vext, we employ the information just obtained for circulant matrices, for

Toeplitz ones, with the help of the basic

Lemma (A.9) Any N~dimensional block Toeplitz matrix can be imbedded into

a IN-dimensional block circulant one.

Proof consider the block Toeplitz mattix .0]- 9‘(_:_) with
= (6 gomtstgetotaty )e Penote £7 = (&) yoottest (),

£+ = (tl,'"tN_l) and define the associated Toeplitz matrix

5%

verified that

.?; -,0]'(5.",9,_{) where s can be any fixed block. It {is readily
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(A.9a) € -

-

is a 2N-dimensional block circulant

(A.9b) ? = ?(2) ’ e (to ,£+,8,_t_-);

in entrywise form we have

o T Y Yy o8 ST L S |
ta -2 -1 t,
ton Y t1-N
g- | f2w 7T 1 f BT T By 8
s by Tt ty % 0t Y Y4
tN-1 to &y tN-2
. . . .
ty iy Yo 1
AU T O fln B2 70 fa fo |

Remark Rewriting €& 1in (A.9¢) as ff(&), t = (g"’,s,g,s,g’) clarifies that

the imbedding was made pscoible by the process of periodic doubling.

Making use of Lemma (A.9), we have

Corollary (A.10) Multiplication of an N-dimensional hlock Toeplitz

matrix can be implemented ‘fast’, i.e., using @(NlogN) block operations.
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Proof We want to compute g = 9’ ¥, where 9’ 18 an N-dimensional

Toeplitz matrix and w a given N-dimensional vector. For that purpose,

twbed F  ato €= (g 'g) and compute gz, = @, ¥, = (g,gﬂ)' -
as ? being a circulant, this last multiplication can be implemented fast
using 1its spectral representation (A.3) with two FFT’s requiriung @(Nlogﬂ)
operations. The first N components of 2z, are then the desired vector z.

Corollary (A.11) For a block Toeplitz matrix 9’(9 we have

N-1 132%
(A.11) 1T < Max |} I e -t,!
0<§<2N=1 f=—(N-1)

Proof Imbed J(t) into @(c) with ¢ = (:o,f,o,_:_‘) we then have
from Lemma (A.7)

n

R

1T < 1€t = Max 1) e
0<J<2N-1 2=0

czl;

Insertion of the specific values of the bhlocks ey in this case, shows that

the upper-bound on the right-hand side equals

N-1 131% . M1 132% N-1 1521;;
Max ! Ze 'ty + (-1)7+0 + Z e 'tl-ZNﬂ 2 Max Z e ‘tzl-
0<j<aN-1 £=0 faN+1 0<J<2N-1 L==(N-1)

Remark Making use of the freedom in choosing the block 8 along the
main diagonal of the associated Toeplitz 'y; (which was taken to be zero

above), we aimilarily get

L
N=l o i3t

1T < el Max 1e-DIes s § e Vee],
8 o<y<on-1 L==(N-1)
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Corresponding to Corollary (A.8) we have

Corollary (A.12) The norm of a scalar Toeplitz matrix does not exceed

the absolute value sum of its elements along its first ani last rows.

B. The Fourier Method -~ The Case of Even Number of Gridpoints

The Fourier method is usually implemented with aan even number of
gridpoints, N = 2n; to be exact, with N being an iIntegral power of 2, in
vhich case the Cooley-Tukey variants of FFT are optimal. HWHere we record the

slightly different formulas goveraing this case.

27 L

' V-O, l. eee2n~-1.

Assume v, are known gridvalues at x, = Vh, h =

Their Pourier differencing amouonts to differentiation of their trigonometric

interpolant
~ Tooa
(B.1a) V) =) v el
wW=—=11

Here, the double prime denotes, as usual, halving the first and last teras,

and the discrete Fourier coefficients v, are gliven by
1.7¢ ~$wvh
(8.1b) AR A .

An explicit representation of the Fourier differencing matrix F

transforatng ¥ = (vg,eeev, )7 tato [yl = (Dx;‘xo'."’nlexzn-l)" o

be obtained by differentiating the interpolant formula, e.g. [22, Chapter X}

- 2n-1
o2 vea = %.vZo WRoexy) R = iR

giving
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(B.3) {Fl

By, = -1 ecot (k=) n/20) 01, 0¢3,k<20-1.

As a block circulant matrix, it admits the spectral represeatation

(B.4a) E = NEAF
with
(B.4b) Ag = diag[O'Im,-i(n-l)'Im,'°°,0°Im,"',t(n-l)°I‘].

Obgerve that zero 1s a double eigenvalue in this case ~ this is necessairly so

as F being an antisymmetric even dimensional wmatrix, having the other

~

complex eigenvalues {n pairs. The left eigenvectors corresponding to the

double zero eigenvalue are
(.5a) e=0, GO -1, 01
(B.5b) ™ p-0, ™) - ST SPLLEIS SE S0 i

asserting the exactness of the differemntiation (B.3) for V(x) = Const. and
;(x) = cos(nx), respectively (compare [7, Lemma 1.1]}.

The Fourier method for (0.1) with L = A(x)D,, is of the form
(8.6) 3,u(t) = AFy(t).

Stability analysis in this case i{s similar to that introduced in Section 7 for

the case of odd number of gridpoints. That {s, to estimate the real symmetric
- 2 .

part of (Lv.v], see (6.2), we use the aliasing formula which still reads, see

(5.3)
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v, } w(wHkN),  N=2n

ku—co

leading us to an examination of the aliasing term, see (6.6)

~ ~ - -
(8.7) Zle(Lv,v) - 1'2 v [(q-p)' Z A(p-q+2kn)]v .
Ipl,lql<a P k#0 1
In this case, however, we have a priori informatfon about the last discrete
Fourier coefficient Vo To see how it comes about, multiply (B.6) by F on

the left, and rename the new variable w = Fy for which we find
3,8(t) = FAw(e);

next, multiplication by (g(“))* on the left and using (B.5b) we conclude

that (z(™)*u(t) - which, by definition, colncides with
. 2p-1
vﬂ(t) E

vvcos(nxv) - rerains constant in time, wi_n(t) - (t=0) =0.

va() v*n
Thus, returaing to the aliasing term in (B.7), it is enough to sum only the

first (n-l1) modes

ZRe(L;-L;,;) - i’X w*[(q-p) 2 A(p-q+2kn)]w .
tel,lql<n-1 P k#0 q

In particular, {f A(x) contains ounly one mode, the vanishing right-hand side

results in the desired energy estimate for w = Fv which in turn amounts to

1

an KR - stability in this case -—— see [7].
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